Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0134723, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737615

RESUMO

In the present study, we show that SARS-CoV-2 can infect palatine tonsils, adenoids, and secretions in children without symptoms of COVID-19, with no history of recent upper airway infection. We studied 48 children undergoing tonsillectomy due to snoring/OSA or recurrent tonsillitis between October 2020 and September 2021. Nasal cytobrushes, nasal washes, and tonsillar tissue fragments obtained at surgery were tested by RT-qPCR, immunohistochemistry (IHC), flow cytometry, and neutralization assay. We detected the presence of SARS-CoV-2 in at least one specimen tested in 27% of patients. IHC revealed the presence of the viral nucleoprotein in epithelial surface and in lymphoid cells in both extrafollicular and follicular regions, in adenoids and palatine tonsils. Also, IHC for the SARS-CoV-2 non-structural protein NSP-16 indicated the presence of viral replication in 53.8% of the SARS-CoV-2-infected tissues. Flow cytometry showed that CD20+ B lymphocytes were the most infected phenotypes, followed by CD4+ lymphocytes and CD123 dendritic cells, CD8+ T lymphocytes, and CD14+ macrophages. Additionally, IF indicated that infected tonsillar tissues had increased expression of ACE2 and TMPRSS2. NGS sequencing demonstrated the presence of different SARS-CoV-2 variants in tonsils from different tissues. SARS-CoV-2 antigen detection was not restricted to tonsils but was also detected in nasal cells from the olfactory region. Palatine tonsils and adenoids are sites of prolonged RNA presence by SARS-CoV-2 in children, even without COVID-19 symptoms. IMPORTANCE This study shows that SRS-CoV-2 of different lineages can infect tonsils and adenoids in one quarter of children undergoing tonsillectomy. These findings bring advancement to the area of SARS-CoV-2 pathogenesis, by showing that tonsils may be sites of prolonged infection, even without evidence of recent COVID-19 symptoms. SARS-CoV-2 infection of B and T lymphocytes, macrophages, and dendritic cells may interfere with the mounting of immune responses in these secondary lymphoid organs. Moreover, the shedding of SARS-CoV-2 RNA in respiratory secretions from silently infected children raises concern about possible diagnostic confusion in the presence of symptoms of acute respiratory infections caused by other etiologies.

2.
Transl Res ; 255: 109-118, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36526155

RESUMO

Vertical transmission of Chikungunya virus (CHIKV) has been reported in humans, but the transmission routes have not been completely understood, and experimental animal models are needed to enable detailed investigation of the transmission and pathogenesis of congenital infections. The intertwining of immune response and virus components at the gestation/breastfeeding interfaces between mother and fetus/newborn may have effects during the offspring development. An experimental model of CHIKV was established by infecting pregnant BALB/c female mice that enabled confirmation that dams inoculated up to the 10th gestational day transmit CHIKV transplacentally to approximately 8.4% of the fetuses, resulting in severe teratogenic effects. CHIKV neutralizing antibodies were detected in sera from adult mice born to healthy females and breastfed by CHIKV-infected dams, while no neutralization was detected in sera from animals born to CHIKV-infected dams. Moreover, adult mice born to healthy dams and cross-fostered for breastfeeding by CHIKV-infected dams were resistant to challenge with CHIKV on the 90th day after birth. The animals also had reduced viral loads in brain and spleen as compared to controls. There was expression of fluorescent CHIKV non-structural protein, and detection of viral RNA by RT-PCR in breast tissue from infected dams. CHIKV RNA and proteins were also detected in breast milk retrieved from the stomachs of recently fed newborns. The experimental results were also complemented by the finding of CHIKV RNA in 6% of colostrum samples from healthy lactating women in a CHIKV-endemic area. Breastfeeding induces immune protection to challenge with CHIKV in mice.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Gravidez , Feminino , Animais , Camundongos , Vírus Chikungunya/genética , Aleitamento Materno , Lactação , Anticorpos Antivirais , Camundongos Endogâmicos BALB C , RNA
3.
J Neurochem ; 163(2): 113-132, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35880385

RESUMO

COVID-19 causes more than million deaths worldwide. Although much is understood about the immunopathogenesis of the lung disease, a lot remains to be known on the neurological impact of COVID-19. Here, we evaluated immunometabolic changes using astrocytes in vitro and dissected brain areas of SARS-CoV-2 infected Syrian hamsters. We show that SARS-CoV-2 alters proteins of carbon metabolism, glycolysis, and synaptic transmission, many of which are altered in neurological diseases. Real-time respirometry evidenced hyperactivation of glycolysis, further confirmed by metabolomics, with intense consumption of glucose, pyruvate, glutamine, and alpha ketoglutarate. Consistent with glutamine reduction, the blockade of glutaminolysis impaired viral replication and inflammatory response in vitro. SARS-CoV-2 was detected in vivo in hippocampus, cortex, and olfactory bulb of intranasally infected animals. Our data evidence an imbalance in important metabolic molecules and neurotransmitters in infected astrocytes. We suggest this may correlate with the neurological impairment observed during COVID-19, as memory loss, confusion, and cognitive impairment.


Assuntos
COVID-19 , Animais , Astrócitos , Carbono , Cricetinae , Modelos Animais de Doenças , Glucose , Glutamina , Ácidos Cetoglutáricos , Mesocricetus , Piruvatos , SARS-CoV-2
4.
J Vis Exp ; (153)2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31762466

RESUMO

Organotypic, or slice cultures, have been widely employed to model aspects of the central nervous system functioning in vitro. Despite the potential of slice cultures in neuroscience, studies using adult nervous tissue to prepare such cultures are still scarce, particularly those from human subjects. The use of adult human tissue to prepare slice cultures is particularly attractive to enhance the understanding of human neuropathologies, as they hold unique properties typical of the mature human brain lacking in slices produced from rodent (usually neonatal) nervous tissue. This protocol describes how to use brain tissue collected from living human donors submitted to resective brain surgery to prepare short-term, free-floating slice cultures. Procedures to maintain and perform biochemical and cell biology assays using these cultures are also presented. Representative results demonstrate that the typical human cortical lamination is preserved in slices after 4 days in vitro (DIV4), with expected presence of the main neural cell types. Moreover, slices at DIV4 undergo robust cell death when challenged with a toxic stimulus (H2O2), indicating the potential of this model to serve as a platform in cell death assays. This method, a simpler and cost-effective alternative to the widely used protocol using membrane inserts, is mainly recommended for running short-term assays aimed to unravel mechanisms of neurodegeneration behind age-associated brain diseases. Finally, although the protocol is devoted to using cortical tissue collected from patients submitted to surgical treatment of pharmacoresistant temporal lobe epilepsy, it is argued that tissue collected from other brain regions/conditions should also be considered as sources to produce similar free-floating slice cultures.


Assuntos
Encéfalo/citologia , Neurônios/fisiologia , Adulto , Animais , Encéfalo/metabolismo , Morte Celular , Humanos , Peróxido de Hidrogênio/metabolismo , Técnicas de Cultura de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...